Q1.Figure 1 shows a skier using a drag lift.

The drag lift pulls the skier from the bottom to the top of a ski slope.
The arrows, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} represent the forces acting on the skier and her skis.
Figure 1

(a) Which arrow represents the force pulling the skier up the slope?

Tick one box.

A \square

B

C \square

D

(b) Which arrow represents the normal contact force?

Tick one box.

A

B \square

C

\square

D \square
(c) The drag lift pulls the skier with a constant resultant force of 300 N for a distance of 45 m .

Use the following equation to calculate the work done to pull the skier up the slope.
work done $=$ force \times distance
\qquad
\qquad
Work done = ...J
(d) At the top of the slope the skier leaves the drag lift and skis back to the bottom of the slope.

Figure 2 shows how the velocity of the skier changes with time as the skier moves down the slope.

Figure 2

After 50 seconds the skier starts to slow down.
The skier decelerates at a constant rate coming to a stop in 15 seconds.
Draw a line on Figure 2 to show the change in velocity of the skier as she slows down and comes to a stop.

Q2. (a) The diagrams below show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.
(i)

When the forces are increased
\qquad
\qquad
When the forces are removed
\qquad
\qquad
(ii)

When the forces are increased
\qquad
\qquad
(iii)

When the forces are increased
\qquad
\qquad

When the forces are removed
\qquad
\qquad
(b) The graph shows the increase in length of a spring against load (force).

The length of the spring with no load was 15 cm .
Use the graph to find:
(i) The load needed to produce an increase in length of 2 cm .
(ii) The increase in length produced by a load of 2.3 N .
(iii) The length of the spring when the load was 2.3 N .
\qquad

Q3. (a) Two skydivers jump from a plane. Each holds a different position in the air.

Adapted from Progress with Physics by Nick England, reproduced by permission of Hodder Arnold

Complete the following sentence.
Skydiver \qquad will fall faster because \qquad
\qquad
\qquad

The diagram shows the direction of the forces acting on one of the skydivers.

Adapted from Progress with Physics by Nick England, reproduced
by permission of Hodder Arnold
(b) In the following sentences, cross out in each box the two lines that are wrong.
(i) Force \mathbf{X} is caused by
air resistance
friction
gravity
(iii) When force \mathbf{X} is bigger than force \mathbf{Y}, the speed of the

(iv) After the parachute opens, force \mathbf{X} goes down
(c) How does the area of an opened parachute affect the size of force \mathbf{Y} ?
\qquad
\qquad

Q4. The diagram shows a sky-diver in free fall. Two forces, \mathbf{X} and \mathbf{Y}, act on the sky-diver.

(a) Complete these sentences by crossing out the two lines in each box that are wrong.

air resistance friction gravity
(ii) Force \mathbf{Y} is caused by
(b) The size of force \mathbf{X} changes as the sky-diver falls. Describe the motion of the sky-diver when:
(i) force \mathbf{X} is smaller than force \mathbf{Y},
\qquad
\qquad
(ii) force \mathbf{X} is equal to force \mathbf{Y}.

Q5. The diagram shows the forces on a small, radio-controlled, flying toy.

(a) (i) The mass of the toy is 0.06 kg .

Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
Calculate the weight of the toy.
Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Weight =
\qquad
(ii) Complete the following sentence by drawing a ring around the correct line in the box.

When the toy is hovering stationary in mid-air, the lift force is

bigger than
the same as
smaller than

(b) When the motor inside the toy is switched off, the toy starts to accelerate downwards.
(i) What does the word accelerate mean?
(ii) What is the direction of the resultant force on the falling toy?
(Total 6 marks)

Q6.The diagram shows the passenger train on part of a rollercoaster ride.
(a) Which arrow shows the direction of the resultant force acting on the passenger train?
Put a tick (\checkmark) in the box next to your choice.

(b) For part of the ride, the maximum gravitational field strength acting on the passengers seems 3 times bigger than normal.

Normal gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
(i) Calculate the maximum gravitational field strength that seems to act on the passengers during the ride.
\qquad
\qquad
Maximum gravitational field strength $=$ \qquad N / kg
(ii) One of the passengers has a mass of 75 kg .

Calculate the maximum weight this passenger seems to have during the ride.
Show clearly how you work out your answer.
\qquad
\qquad
Maximum weight $=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots N$

Q7. The diagram shows an adult and a child pushing a loaded shopping trolley.

(a) (i) What is the total force on the trolley due to the adult and child?
(ii) Which one of the terms in the box means the same as total force?

Draw a ring around your answer.

(iii) The trolley is pushed at a constant speed for 80 metres.

Calculate the work done to push the trolley 80 metres.
Show clearly how you work out your answer.
\qquad
\qquad
Work done =
(b) Complete the following sentences by drawing a ring around the correct word in each of the boxes.

Q8.(a) The diagrams, A, B and C, show the horizontal forces acting on a moving car.
Draw a line to link each diagram to the description of the car's motion at the moment when the forces act.

Draw only three lines.

(b) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

(i) Draw an arrow in Box 1 to show the direction of the force that the car exerts
on the barrier.
(ii) Draw an arrow in Box 2 to show the direction of the force that the barrier exerts on the car.
(iii) Complete the following by drawing a ring around the correct line in the box.

The car exerts a force of 5000 N on the barrier. The barrier does not move. The force

exerted by the barrier on the car will be | more than |
| :--- |
| equal to |
| less than | 5000 N.

(iv) Which one of the following gives the most likely reason for attaching electronic sensors to the dummy?

Put a tick (\checkmark) in the box next to your answer.

To measure the speed of the car just before the impact.

To measure the forces exerted on the dummy during the impact.

To measure the distance the car travels during the impact. \square
(1)
(Total 7 marks)

Q9.(a) The diagram shows two forces acting on an object.

What is the resultant force acting on the object?
Tick (\checkmark) one box.

4 N to the right

4 N to the left

(b) BASE jumpers jump from very high buildings and mountains for sport.

The diagram shows the forces acting on a BASE jumper in flight.
The BASE jumper is wearing a wingsuit.

(i) Draw a ring around the correct answer in the box to complete each sentence.

The BASE jumper falls with a constant speed when force \mathbf{C} is
(ii) To land safely the BASE jumper opens a parachute.

What effect does opening the parachute have on the speed of the falling BASE jumper?
\qquad
Give a reason for your answer.
\qquad
\qquad

Q10.(a) A student uses some everyday items to investigate static electricity.

1 A strip of plastic is cut from a plastic carrier bag

2 The plastic strip is rubbed with a cloth

3 The plastic strip is hung over a wooden rod
(i) Draw a ring around the correct answer in the box to complete each sentence.

Rubbing the plastic strip with a cloth causes the strip to become negatively charged.

(ii) When the plastic strip is hung over the wooden rod, the two halves of the strip move equally away from each other.

What two conclusions should the student make about the forces acting on the two halves of the plastic strip?

1 \qquad
\qquad

2 \qquad
\qquad
(b) Electrical charges move more easily through some materials than through other materials.

Through which one of the following materials would an electrical charge move most easily?

Draw a ring around your answer.
aluminium glass rubber

